Sanering van diffuus verontreinigde bodems gekoppeld aan de productie van biobrandstoffen

A. Peene (OWS)
L. Van Ginneken and W. Dejonghe (VITO)
Aim MIP-project

• Use of phytoremediation for two purposes:
 – Remediate soils that are diffusively polluted with heavy metals
 – Production of bio-energy

• Used plants:
 • Rapeseed
 • Maize
 • Wheat

• Planten gegroeid in Kempen gebied vnl. gepollueerd met Zn, Cd en Pb
Partners: 8

<table>
<thead>
<tr>
<th>Company</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>OWS (A. Peene, J. Smis)</td>
<td>Anaerobic digestion</td>
</tr>
<tr>
<td>Vyncke (H. Fastenaekels)</td>
<td>Incineration</td>
</tr>
<tr>
<td>EnviTech NV (E. Beeckman)</td>
<td>Plasmagasification</td>
</tr>
<tr>
<td>INDINOX (S. De Schepper)</td>
<td>Biodiesel production</td>
</tr>
<tr>
<td>Umicore (J. Kegels)</td>
<td>Energy and metal reduction in a melter</td>
</tr>
</tbody>
</table>
| UHasselt (J. Vangronsveld, A. Ruttens) (T. Thewys, N. Witters) | - Biological stimulation phyto-extraction
 | - Economical analysis industrial application
 | - Phytoremediation – production bio-fuels |
| UG (E. Meers, S. Vanslycken, F. Tack) | - Physico-chemical stimulation phytoextraction |
| VITO (W. Dejonghe, L. Van Ginneken, R. Guisson) | - Biodiesel production
 | - Massbalances heavy metals and energy in energy
 | - Massbalances heavy metals in soil, plant, energy
 | - Production processes |

- **Biological** stimulation phyto-extraction
- **Physico-chemical** stimulation phytoextraction
Effect heavy metals on performance
two energy-production processes

• Biodiesel production from heavy metal polluted rapeseed: Luc Van Ginneken (VITO)

• Biogas production from heavy metal polluted maize: Andy Peene (OWS)
Effect heavy metals on performance two energy-production processes

• Biodiesel production from heavy metal polluted rapeseed: Luc Van Ginneken (VITO)

• Biogas production from heavy metal polluted maize: Andy Peene (OWS)
Digestion

- **OWS:**
 - Engineering department
 - Lab department

- **DRANCO - process**
 - Dry, thermophilic
 - Inputs: waste, energy crops → phytoremediation crops?
 - More than 20 full-scale DRANCO-plants worldwide

- **Digestability tests:**
 - Phase 1: Batch tests: Determination of substrate
 - Phase 2: Semi-continuous: Long-term effects?
Batch tests

• Contaminated versus clean maize:
 – Difference in biogas production
 • Dependant on species
 • No influence of heavy metals
 – Heavy metal analyses by UGent

• Influence of harvesting time
 – Total plant: optimal harvesting time?
 – Grains: the later, the better
 – Rest of plant? Different parts of plant?
Batch tests

• Parts of maize plant
 – Weight fraction
 – Biogas production
 – Further split-up:
 • Grain
 • Corncob
 • Flyleafs
 • Stalk and leaves
 • 0-30 cm, just above soil level
 – Heavy metal analyses: UGent
Batch tests

- Preliminary results:
 - Very low concentration of heavy metals in grain (UGent)
 - Influence of harvesting time:
 - Grain: Biogas productivity increases
 - 0-30 cm: Biogas productivity decreases

- Future research:
 - Digestion of maize without grain: interesting?
Continuous tests

- Digestion of maize silage
- Contaminated maize versus Clean maize
- Questions:
 - Heavy metal concentration?
 - Influence at long term?
 - Post-treatment of digestate:
 - Heavy metals in press liquid or press cake?
 - Press cake: next phase? Incineration, pyrolysis, ...?
Continuous tests

• Preliminary results:
 – No influence of heavy metals on digestion process
 – Definitive evaluation:
 • Dependant on retention time (RT)
 • Test duration = minimum 3 or 4 times the RT
 – UGent: preliminary heavy metal analysis
Continuous tests

% Total Solids (TS)

0 5 10 15 20 25 30 35

Contaminated Clean

Silage Digestate
Continuous tests

![Graph showing total N (g/kg TS) for contaminated and clean samples with silage and digestate categories.](image-url)
Continuous tests

![Bar chart showing zinc levels in Contaminated and Clean samples.](chart.png)

- Contaminated:
 - Silage: 267 mg/kg TS
 - Digestate: 458 mg/kg TS

- Clean:
 - Silage: 19 mg/kg TS
 - Digestate: 116 mg/kg TS
Continuous tests

Contaminated Clean Cadmium (mg/kg TS)

- Silage: 0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00
- Digestate: 1.07, 1.49, 0.08, 0.29
Conclusions

- Presence of heavy metals in plants
 - Stimulates HTPM biodiesel production process
 - Seems to have no influence on the digestion process

- Evaluate the effect of the plant material and heavy metals in the plasmagasification and incineration processes

- Compare the energy performance of the 5 studied energy production processes