IN-SITU CONDITIONING AND STABILIZATION OF DREDGING AND MINERAL SLUDGE

5th International Conference on Remediation of Contaminated Sediments
2 to 5/02/09, Jacksonville, Florida
Introduction

• Sediments often dredged for nautic reasons but also due to contamination with heavy metals and organic pollutants

• Sediments stored in ponds but:
 – Large volumes of sediment with a high water content and low strength
 – Ponds are full
 – Pollutants can leach and cause a risk to the environment
Disadvantages hydraulic filling ponds

South-Africa, 1994, spills 3 million m³

Spain, 1998, spills 7 million m³
Introduction

• MIP project wants to find a solution for:
 – The water content of the sludge: decrease water volume
 – A way to stimulate the immobilization of HM or degradation of organic pollutants in these sludges: chemically / biologically
Aim MIP project

1. Chemical and biological stabilization and consolidation of sludge

2. Chemical and biological removal of contamination (heavy metals, mineral oil, PAHs, PCBs)

3. Tests:
 1. Lab tests by research partners
 2. *In situ* tests by industrial partners: focus on injection techniques and additives
Aim MIP project

1. Chemical and biological stabilization and consolidation of sludge

2. Chemical and biological removal of contamination (heavy metals, mineral oil, PAHs, PCBs)

3. Tests:
 1. Lab tests by research partners
 2. *In situ* tests by industrial partners: focus on injection techniques additives
Chemical stabilization and consolidation sludge: University of Ghent

- Addition of additives to:
 - Decrease sedimentation and consolidation time
 - Increase final density (compaction)
 - Increase final shear resistance
 - Decrease pollutant leaching
Chemical stabilization and consolidation sludge: University of Ghent

• Seepage consolidation tests:
Biological stabilization sludge
Catholic University College of Bruges-Ostend

• *In situ* stabilization by bacterial calcification
• Principle:
 – Degradation of ureum to NH_4^+ and CO_3^{2-}
 – Due to pH increase: shift of $\text{CO}_2/\text{HCO}_3^-/\text{CO}_3^{2-}$ to CO_3^{2-}
 – Reaction of CO_3^{2-} with Ca^{2+} to CaCO_3
 – CaCO_3: stabilization of sludge and fixation of pollutants
Aim MIP project

1. Chemical and biological stabilization and consolidation of sludge
2. Chemical and biological removal of contamination (heavy metals, mineral oil, PAHs, PCBs)
3. Tests:
 1. Lab tests by research partners
 2. *In situ* tests by industrial partners: focus on injection techniques additives
Biological degradation of organic pollutants:
Catholic University of Leuven

• Bacterial capacity present in sludge for degradation of organic pollutants?:
 • Degradation naphthalene?
 • Degradation chlorobenzenes?

• Stimulation biological degradation?
• Influence of chemical additives on biological degradation?
Chemical removal of pollutants:
Flemish Institute for Technological Research (VITO)

• Chemical oxidation and chemical reduction of organic pollutants
In situ chemical oxidation (ISCO) of pollutants in sediments

- **Chemical oxidation:**
 - Degradation of organic pollutants:
 - mineral oil, BTEX, PAHs, MTBE, chlorinated compounds
 - Oxidants:

<table>
<thead>
<tr>
<th>Oxidant</th>
<th>ORP (V)</th>
<th>Reactive species</th>
<th>Target pollutants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fenton’s: $H_2O_2 + Fe(II)$</td>
<td>2.8</td>
<td>$\cdot OH, \cdot O_2^-, \cdot HO_2^-, HO_2^-$</td>
<td>Petroleum hydrocarbons, Chlorinated solvents (ethenes: PCE, TCE), BTEX, MTBE, PCBs, CBs, PAHs, phenols</td>
</tr>
<tr>
<td>Activated persulfate: $Na_2S_2O_8 + Fe/heat/acid/base$</td>
<td>2.6</td>
<td>SO_4^{2-}</td>
<td>Petroleum hydrocarbons, Chlorinated solvents (ethenes: PCE, TCE; ethanes:TCA, DCA; methanes), BTEX, MTBE, PCBs, PAHs</td>
</tr>
<tr>
<td>Ozone</td>
<td>2.1</td>
<td>O_3</td>
<td>Petroleum hydrocarbons, Chlorinated solvents (ethenes: PCE, TCE), BTEX, MTBE, PAHs, PCBs</td>
</tr>
<tr>
<td>Persulfate: $Na_2S_2O_8$</td>
<td>2.1</td>
<td>$S_2O_8^{2-}$</td>
<td>Petroleum hydrocarbons, Chlorinated solvents (ethenes: PCE, TCE; ethanes:TCA, DCA; methanes)</td>
</tr>
<tr>
<td>Hydrogen peroxide</td>
<td>1.8</td>
<td>H_2O_2</td>
<td></td>
</tr>
<tr>
<td>Permanganate: $KMnO_4$, $NaMnO_4$</td>
<td>1.7</td>
<td>MnO_4^-</td>
<td>Petroleum hydrocarbons, BTEX, PAHs, Chlorinated solvents (ethenes: PCE, TCE), phenols</td>
</tr>
</tbody>
</table>
In situ chemical oxidation (ISCO) of pollutants in sediments

- **Total oxidant demand**
 - Contaminant demand
 - **natural oxidant demand**: organic matter, reduced metals, sulfides
 - Oxidant decomposition

- **Oxidation of sediments**:
 - Often **high organic matter content** (MIP sediments: 2.4 – 10% OM)
 → high natural oxidant demand
 - Often **mixed pollution** of organics + heavy metals:
 - Oxidation of reduced/precipitated heavy metals
 - Fenton’s/ Persulfate oxidation: acidic conditions/ pH↓
 → risk of heavy metal **mobilisation**
Chemical oxidation of pollutants in sludge Berendrechtsluis

<table>
<thead>
<tr>
<th>Sludge characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>dry matter content (%)</td>
</tr>
<tr>
<td>pH</td>
</tr>
<tr>
<td>organic matter content (%)</td>
</tr>
<tr>
<td>Clay content (%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organic contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td>mineral oil (mg/kg DM)</td>
</tr>
<tr>
<td>PAH 16 (mg/kg DM)</td>
</tr>
<tr>
<td>PCBs (mg/kg DM)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heavy metals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total content</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Al</td>
</tr>
<tr>
<td>As</td>
</tr>
<tr>
<td>Cd</td>
</tr>
<tr>
<td>Cr</td>
</tr>
<tr>
<td>Fe</td>
</tr>
<tr>
<td>Cu</td>
</tr>
<tr>
<td>Hg</td>
</tr>
<tr>
<td>Pb</td>
</tr>
<tr>
<td>Ni</td>
</tr>
<tr>
<td>Zn</td>
</tr>
</tbody>
</table>
In situ chemical oxidation (ISCO) of pollutants in sediments

- Preliminary results: Natural oxidant demand with different oxidants
 - Sediment sample tested: 6.9% OM
 - Oxidants: KMnO₄ and Na₂S₂O₈
 - Laboratory test: natural oxidant demand measured after 14 days

<table>
<thead>
<tr>
<th>Oxidant</th>
<th>Natural oxidant demand</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(g/kg DM)</td>
<td>(Euro/tonDM)</td>
</tr>
<tr>
<td>Na₂S₂O₈</td>
<td>50-100</td>
<td>140-280</td>
</tr>
<tr>
<td>KMnO₄</td>
<td>300-450</td>
<td>1200-1800</td>
</tr>
</tbody>
</table>

- Economically feasible?
- Lower natural oxidant demand with persulfate compared to permanganate
In situ chemical oxidation (ISCO) of pollutants in sediments

- Preliminary results: Natural oxidant demand (permanganate) in sediments with different organic matter content
 - Oxidant: KMnO₄
 - Laboratory test:
 natural oxidant demand measured after 14 days

<table>
<thead>
<tr>
<th>Sediment sample</th>
<th>Organic matter content (%)</th>
<th>Natural oxidant demand (g/kg DM)</th>
<th>Cost (Euro/tonDM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zandwinningsput</td>
<td>2.4</td>
<td>50-100</td>
<td>200-400</td>
</tr>
<tr>
<td>Berendrechtsluis</td>
<td>6.9</td>
<td>300-450</td>
<td>1200-1800</td>
</tr>
<tr>
<td>leper-IJzer kanaal</td>
<td>7.6</td>
<td>150-300</td>
<td>600-1200</td>
</tr>
</tbody>
</table>

- Natural oxidant demand increases with amount of organic matter?
- Natural oxidant demand is lower for ‘older’ organic matter?
In situ chemical oxidation (ISCO) of pollutants in sediments

- Preliminary results: mobilisation of heavy metals
 - Sediment sample tested: 7% OM
 - Oxidant: Na₂S₂O₈

<table>
<thead>
<tr>
<th>oxidant dose (g/kg DM)</th>
<th>pH</th>
<th>As</th>
<th>Cd</th>
<th>Cr</th>
<th>Cu</th>
<th>Fe</th>
<th>Pb</th>
<th>Ni</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7,5</td>
<td>0,09</td>
<td><0,026</td>
<td>0,12</td>
<td><0,13</td>
<td>0,71</td>
<td>0,22</td>
<td><0,04</td>
<td>0,05</td>
</tr>
<tr>
<td>50</td>
<td>6,5</td>
<td>0,08</td>
<td>0,08</td>
<td>0,10</td>
<td>0,16</td>
<td>0,14</td>
<td>2,42</td>
<td>0,16</td>
<td>7,0</td>
</tr>
<tr>
<td>100</td>
<td>6,2</td>
<td>0,09</td>
<td>0,11</td>
<td>0,09</td>
<td>0,37</td>
<td>0,42</td>
<td>4,03</td>
<td>0,40</td>
<td>14,9</td>
</tr>
<tr>
<td>150</td>
<td>6,1</td>
<td>0,08</td>
<td>0,12</td>
<td>0,09</td>
<td>0,48</td>
<td>0,65</td>
<td>4,81</td>
<td>0,47</td>
<td>17,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total initial content of metals (mg/kg DM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leachable metals (DIN-S4 extraction) (mg/kg DM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,43</td>
</tr>
</tbody>
</table>

- decrease of pH from 7,5 to 6,2
- release of Pb, Ni and Zn: <5% of total initial content
Aim MIP project

1. Chemical and biological stabilization and consolidation of sludge

2. Chemical and biological removal of contamination (heavy metals, mineral oil, PAHs, PCBs)

3. Tests:
 1. Lab tests by research partners
 2. *In situ* tests by industrial partners: focus on injection techniques additives
Injection techniques additives

1. Injection techniques additives
 - *In-situ* fracturing (Envisan, Rasenberg)
 - Soft Soil Injection System (DEC)
 - Dredging cutter with additives (Ghent Dredging)
 - Inline injection additives during filling ponds

2. Removal pore water
 - Vacuum consolidation (Envisan)
 - Soil drainage (Envisan)
 - Wings (Ghent Dredging)
Partners

Research partners
• VITO NV (Flemish Institute for Technological Research), Belgium, Sandra Van Roy, Frederik Accoe, Ludo Diels, Winnie.Dejonghe@vito.be
• K.U.L. (Catholic University of Leuven), Belgium, Danka Cichocka, Dirk.Springael@agr.kuleuven.ac.be
• Ghent University, Belgium, Luca Barbetti, Peter.VanImpe@UGent.be
• Catholic University College of Bruges-Ostend, Belgium, Véronique Jonckheere Boudewijn.Meesschaert@khbo.be

Industrial partners
• MWH, Belgium, Liv Duerinckx, Jos.Vandekeybus@mwhglobal.com
• Envisan, Belgium, Geert Ide, Alain.Pieters@envisan.be
• Rasenberg Milieu, Belgium, Henk Seffelaar, H.Seffelaar@rasenberg.nl
• DEC, Belgium, Pensaert.Stany@deme.be
• Ghent Dredging, Belgium, Micha.Geeraert@ghentdredging.be
• WVRB, Belgium, Gerrit.Vanrompaey@wvrb.be

Problem Owners
• Port of Antwerp, Belgium, Ellen Van Goylen, Agnes.Heylen@haven.Antwerpen.be
• Agency for Maritime and Coastal Services, Belgium, Miguel.Berteloot@mow.vlaanderen.be
• Nyrstar, Belgium, Michel.Dubois@zinc.nyrstar.com
• Tessenderlo Chemie, Belgium, Jules.Houtmeyers@tessenderlo.com

Research funded by
• Research partners: MIP
• Industrial partners: IWT